Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
نویسندگان
چکیده مقاله:
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as wavelet-based features, both extracted from pixel-based time-signal intensity curves to segment prostate lesions on prostate DCE-MRI. Methods: Quantitative dynamic contrast-enhanced MRI data were acquired on 22 patients. Optimal features selected by forward selection are used for the segmentation of prostate lesions by applying fuzzy c-means (FCM) clustering. The images were reviewed by an expert radiologist and manual segmentation performed as the ground truth. Results: Empirical results indicate that fuzzy c-mean classifier can achieve better results in terms of sensitivity, speciïcity when semi-quantitative features were considered versus wavelet kinetic features for lesion segmentation (Sensitivity of 87.58% and 75.62%, respectively) and (Specificity of 89.85% and 68.89 %, respectively).Conclusion: The proposed segmentation algorithm in this work can potentially be implemented for automatic prostate lesion detection in a computer aided diagnosis scheme and combined with morphologic features to increase diagnostic credibility
منابع مشابه
Automatic Liver Segmentation in Contrast-enhanced MRI
A fully automated method for liver segmentation in contrast enhanced abdominal MRI scans is presented. Liver shape and volume are obtained utilizing a context based approach. Compared to manual segmentation, the obtained liver volumes differ less than 10%. The mean sensitivity of 0.92 is comparable to other published liver segmentation methods.
متن کاملEvaluation of the accuracy of dynamic contrast enhanced MRI in the diagnosis of invasive prostate neoplasm using pathological findings
Background: Prostate cancer is the most common malignancy in men and the second leading cause of death in all countries of the world. The exact mechanism of prostate cancer is not known. On the other hand, early detection of prostate cancer can lead to a complete cure. Several clinical experiments including Digital Rectum Examination (DRE), biochemistry such as Prostate Specific Antigen (PSA), ...
متن کاملDynamic contrast - enhanced MRI in cancer REVIEW
Dynamic contrast-enhanced MRI has been proven to be a valuable technique in cancer imaging. The poorly formed and leaky vessels formed during angiogenesis to supply tumors facilitate an increased uptake of intravenously administered contrast agents in comparison to normal vasculature. The use of mathematical modeling techniques on the change in tumor signal intensity as a function of time provi...
متن کاملHead and Neck Cancer Tumor Segmentation Using Support Vector Machine in Dynamic Contrast-Enhanced MRI
Objective We aimed to propose an automatic method based on Support Vector Machine (SVM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to segment the tumor lesions of head and neck cancer (HNC). Materials and Methods 120 DCE-MRI samples were collected. Five curve features and two principal components of the normalized time-intensity curve (TIC) in 80 samples were calculate...
متن کاملComputerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI.
A novel automated computerized scheme has been developed for determining a likelihood measure of malignancy for cancer suspicious regions in the prostate based on dynamic contrast-enhanced magnetic resonance imaging (MRI) (DCE-MRI) images. Our database consisted of 34 consecutive patients with histologically proven adenocarcinoma in the peripheral zone of the prostate. Both carcinoma and non-ma...
متن کاملAnalysis of Dynamic Contrast Enhanced MRI Datasets
The purpose of this research is to perform automated analysis of 4D dynamic contrast enhanced MRI datasets (DCE-MRI) of the hand and wrist relating to rheumatoid arthritis (RA) studies. In DCE-MRI, sequences of images are acquired from the joints over time, during which a contrast agent pre-injected into a patient enhances disease affected tissues. Measurement of this enhancement, which is spec...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات -
تاریخ انتشار 2018-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023